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Figs. S1, S2 and S3/S4/S5 supplement, respectively, Figs. 1, 2 and 3 (main text). Fig. S6 supplements the
conclusions section of the main text.

Sampling simulations: Nonlocal ‘teleportation’ moves. The following algorithm was used to facilitate ‘sampling’
simulations by making moves that allow bond-making and bond-breaking to occur simultaneously, rather than se-
quentially, and so avoiding the long delay associated with the breaking of strong bonds. It also annuls to large extent
the computational cost of diffusion. It is similar in spirit to the algorithm of Chen and Siepmann [1], though slightly
different in detail.

Starting in microstate µ, we select one monomer, A, with uniform probability. We denote by nµ the number of
monomers in microstate µ that lie within A’s interaction range, regardless of the strength of their interaction with
A. We then select with uniform probability a second monomer, B, distinct from A, and ‘teleport’ A to a position
(chosen uniformly) lying within the interaction range of B. The identity of the recipient monomer B differs in general
for forward and reverse moves. Upon teleportation we retain or randomize A’s orientation with equal likelihood. This
move defines a proposed new microstate, ν.

We accept the proposed move of A in order to satisfy detailed balance. Detailed balance [2] guarantees convergence
to the chosen stationary distribution by requiring that at thermal equilibrium the rate for passing from state µ to
state ν is equal to the rate for the reverse transition:
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Here Eµ is the energy of the system in state µ, and Z ≡∑α e
−βEα is the partition function of the system. The variables

pgen and pacc are the respective probabilities of generating and accepting a given transition. For the teleportation of
A, the likelihood of generating the forward move µ→ ν is, ignoring rotational degrees of freedom,
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where Vint is the volume within which two particles may interact. In Equation (S2) the factor of N−1 is the probability
of selecting particle A, while nν/(N −1) is the probability of choosing any particle that may bring A to its final state.
The variable nν is equal to the number of neighbors of A in the final state. The factor of V −1

int accounts for the
probability of choosing a final position for A, given that a particle B has been chosen. The likelihood of generating
the reverse move is
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Inserting Equations (S2) and (S3) into Equation (S1) reveals the ratio of acceptance rates for forward and reverse
moves required to enforce detailed balance. We choose to satisfy this ratio by accepting the proposed move of A with
probability

pteleport
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)
, (S4)
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where ∆E ≡ Eν − Eµ is the energy change resulting from the nonlocal move of A. The ratio of the number of
A’s neighbors in each state, nµ/nν , accounts for the fact that the number of particles that could have effected the
teleport of A may differ for forward and reverse moves. Because A possesses at least one neighbor in the final state ν,
the proposed move will be rejected if A possesses no neighbors in the initial state µ (isolated particles cannot move).
Because of the latter restriction, the algorithm was combined with single-particle moves in order to ensure ergodic
sampling.

Dynamic simulations. We drew monomer translation magnitudes from a uniform distribution with maximum
0.3a, and rotations from a uniform distribution of 0.24 radians. We performed rotations and translations with equal
likelihood. As a test, we performed for two sets of model parameters, (εn, εd) = (2, 5) and (0, 9), dynamic simulations
in which the likelihood of translations, ptrans, ranged from 0.1 to 1. We consider the assembly behavior seen for our
choice of ptrans = 0.5 to be representative of the behavior seen throughout most of that range. However, for ptrans

greater than about 0.9, crystal yields dropped precipitously because particles failed to rotate sufficiently rapidly to
find the crystal state.

Phase classifications and order parameters. We denote by fc and fp the fraction of crystalline and partially
crystalline particles in a simulation box, i.e. those making respectively 3 and 2 directional bonds. Crystal order
(squares) in Figure 1 (main text) is attributed to states with 〈fc〉 > 0.1. Because specific heat peaks associated with
liquid-vapor critical fluctuations are relatively broad for the system sizes studied here, phase separation in Figure 1
(main text) is said to occur if the system is non-crystalline and if the thermal average of the fraction of particles
residing in the system’s largest cluster, 〈fmax〉, exceeds 0.5. The crossover point 〈fmax〉 = 0.5 coincides approximately
with the location of the relevant specific heat peak (see Figure S1). States displaying no crystalline order or evidence of
phase separation are identified as homogeneous fluid. In Figure S1 we show that at large values of εn a non-crystalline
tetratic phase emerges. We consider a tetratic order parameter ft ≡ (N(N−1))−1

∑
〈ij〉 cos (4θij). Here the sum runs

over all particle pairs in the largest cluster in the simulation box; θij is the angle between the long axes of monomers
i and j; and N is the total number of particles in the system (normalization of ft is arbitrary). The crystal possesses
tetratic order and is described by a large value of fc; by contrast, the non-crystalline tetratic phase is described by a
small value of fc. In sampling simulations we used a non-crystalline tetratic phase as an initial condition, for moderate
values of εn, in order to assess its stability.

In Figure 3 (main text) we report a scaled crystal yield f̂c ≡ fc (fc/ (fp + fc))2, designed to reward crystals
possessing a large ratio of bulk-to-surface particles. Yields reported in terms of fc are qualitatively similar, and give
rise to similar conclusions (see e.g. Fig. S5). We report yields in Figure 3 (main text) for fixed processor times (200
CPU hours per simulation), because nucleation in mildly supercooled cases occurs only after a number of MC steps
exceeding that accessible in a reasonable timescale within deeply supercooled, arrested simulations. However, we draw
similar conclusions on the basis of yields reported after fixed numbers of MC steps (see Figure S3). Typically, some
dynamic simulations in mildly supercooled regions produce equilibrated crystals, while independent simulations at
the same thermodynamic state fail to give rise to a nucleation event.

We have not accounted for finite-size effects: crystal instability therefore means that the crystal’s critical nucleus
exceeds the number of particles in the simulation box. However, our aim is to probe mechanisms of assembly within
simulations of finite size: ‘sampling’ simulations are designed to identify the largest possible yield of crystal accessible
to such simulations (or to identify when phase separation in such systems might occur), and not to probe idealized
bulk behavior.

Is the second virial coefficient a predictive measure of crystallization propensity? The second virial coefficient of a
protein, B2, is a useful measure of its propensity for crystallization: many proteins that crystallize possess values of
B2 that lie within a well-defined range [3]. The second virial coefficient for our model S-layer system may be written,
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up to constant terms, as B2 = −κ (An −Ad) (eεn − 1)− κAd (eεn+εd − 1), where An and Ad are the integrated phase
space areas over which the nonspecific and specific interactions of two rectangular monomers act (we find numerically
that An/Ad ≈ 620), and κ is a constant of proportionality with units of area. By rearranging this expression we
see that lines of constant B2 are straight lines of slope 1 − An/Ad on a plot of (eεn+εd − 1) versus (eεn − 1). In Fig.
S6 we have plotted, in such a manner, yield data from Fig. S5 (monomer concentration 1% by area) and from Fig.
3 (main text, monomer concentration 10.91% by area). The larger the square symbol size, the greater the yield of
crystal found in dynamic simulations. Circles identify regions where low-quality- or no crystallization is seen. Dotted
lines are of constant B2 (they are curved because of the linear-log scale). Broadly, we find that crystallization is
indeed seen within a fairly well-defined range of values of B2, but that model proteins with similar values of B2 can
behave differently: model proteins with a) strong specific attractions or b) moderately strong specific and nonspecific
attractions may possess similar values of B2, but can crystallize with different fidelity (and via different dynamical
pathways). Although the difference in yield as one moves along lines of constant B2 is not always dramatic, this
observation reveals that, at least for this model system, order parameters in addition to B2 are required in order to
understand its crystallization.
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 time 0, eps_crystal =  0,  eps_iso =  1 

 linker length/a = 0.2, iso range/a = 0.2 

 crystal fraction =0.88; partial CF= 0.08 

starting 
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 time 0, eps_crystal =  0,  eps_iso =  3.25 

 linker length/a = 0.2, iso range/a = 0.2 

 crystal fraction =0; partial CF= 0 

 time 0, eps_crystal =  0,  eps_iso =  2.6 

 linker length/a = 0.2, iso range/a = 0.2 

 crystal fraction =0; partial CF= 0 

 time 0, eps_crystal =  0,  eps_iso =  1 

 linker length/a = 0.2, iso range/a = 0.2 

 crystal fraction =0; partial CF= 0 

 time 11000000, eps_crystal =  0,  eps_iso =  2.2 

 linker length/a = 0.2, iso range/a = 0.2 

 crystal fraction =0; partial CF= 0 
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FIG. S1: Supplement to Fig. 1 (main text). Equilibrium behavior of monomers lacking specific interactions (εd = 0) (600

particles, 10.91% coverage by area). Data points represent thermal averages, while lines are a guide to the eye. fmax is the

fraction of particles resident in the system’s largest cluster (we show also the variance of fmax scaled by an arbitrary factor);

nb denotes twice the number of pairwise bonds per monomer (Cv/ε
2
n is proportional to the variance of this quantity); ft is the

tetratic order parameter defined in the Supporting Information; and fc is the fraction of crystalline particles in the simulation

box (particles making 3 directional bonds). The snapshots shown correspond to clustering; near-critical fluctuations; a dense

liquid cluster; and a cluster exhibiting non-crystalline tetratic order, from left to right. We note that 〈fc〉 = 0 for all values of

εn considered.
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FIG. S2: Supplement to Fig. 2 (main text). Left: Time-ordered snapshots from a dynamic simulation (2000 monomers,

10.91% coverage by area) with (εn, εd) = (2.5, 4). Crystallization corresponds to arrested liquid-vapor phase separation. Right:

For the same model parameters we plot mean size n̄ and mean number of resident crystal particles n̄c of clusters of size 4

or larger as a function of number of MC steps t (top) and as a parametric function of t (bottom). In the bottom plot we

show also parametric data from state (εn, εd) = (1, 6) (where classical assembly is seen), and for states for which εn = 2.5 and

εd = 3.7, 4.25, 4.5, 4.75, 5, 5.5 and 6. The arrow indicates the direction of increasing εd. While in this regime the liquidlike state

is viable and metastable with respect to the crystal, its lifetime can be much reduced by increasing εd. Data averaged over 16

or 20 independent simulations.
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FIG. S3: Supplement to Fig. 3 (main text). Scaled crystal yields f̂c for fixed number of Monte Carlo steps for εd = 5 and

various fixed values of εn (600 particles, 10.91% coverage by area). Data points represent the mean of 5 independent simulations.

We show also yields after fixed processor time (200 CPU hours per simulation, ‘long’) and equilibrium averages (‘eq.’). We

draw similar qualitative conclusions of the basis of yields reported at specified processor times or specified numbers of MC

steps.
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FIG. S4: Supplement to Fig. 3 (main text). Long-time configurations from dynamic simulations (dy.) and corresponding

equilibrium configurations (eq.) (600 particles, 10.91% coverage by area). Snapshots are labeled (εn, εd), and show either the

whole simulation box or the largest cluster contained in the box.
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 time 15075000, eps_crystal =  12,  eps_iso =  0 

 linker length/a = 0.2, iso range/a = 0.2 

 crystal fraction =0.343333; partial CF= 0.47 
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FIG. S5: Supplement to Fig. 3 (main text). Long-time crystal yields f̂c (lower three curves) and fc (upper three curves) from

simulations of 600 monomers present at concentrations of 1% by area. Similar behavior is seen to that shown in Figure 3 (main

text), right panel (for 10.91% occupancy by area), with nonzero εn enhancing crystal assembly. At right: snapshots from two

labeled states.



9

101

102

103

104

105

106

ex
p
(ε

d
+

ε n
)
−

1

0 5 10
exp(εn)− 1

0.4 ≤ f̂c < 0.5

0.3 ≤ f̂c < 0.4

0.2 ≤ f̂c < 0.3

0.1 ≤ f̂c < 0.2

f̂c < 0.1

101

102

103

104

105

106

ex
p
(ε

d
+

ε n
)
−

1

0 5 10
exp(εn)− 1

101

102

103

104

105

106
ex

p
(ε

d
+

ε n
)
−

1

0 5 10
exp(εn)− 1

c = 1% c = 10.91%

FIG. S6: Supplement to conclusions (main text). Monomers with similar values of B2 can show different propensities for

crystallization. We plot crystal yields from dynamic simulations for low concentration c of monomers (left panel, data from

Fig. S5) and moderate concentration of monomers (right panel, data from Fig. 3, main text). Symbol size indicates crystal

yield. Lines of constant B2 are shown dotted. Along lines of constant B2, yield can be enhanced (and/or the dynamics of

crystallization altered) by diminishing the strength of specific attractions and enhancing the strength of nonspecific interactions.
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